Horizontal Subbundle on Lie Algebroids

نویسندگان

  • A. Heydari Department of pure Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran
  • M. Tayyebi Department of pure Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran
چکیده مقاله:

Providing an appropriate definition of a horizontal subbundle of a Lie algebroid will lead to construction of a better framework on Lie algebriods. In this paper, we give a new and natural definition of a horizontal subbundle using the prolongation of a Lie algebroid and then we show that any linear connection on a Lie algebroid generates a horizontal subbundle and vice versa. The same correspondence will be proved for any covariant derivative on a Lie algebroid.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Poisson Structures on Lie Algebroids

In this paper the properties of Lie algebroids with Poisson structures are investigated. We generalize some results of Fernandes [1] regarding linear contravariant connections on Poisson manifolds at the level of Lie algebroids. In the last part, the notions of complete and horizontal lifts on the prolongation of Lie algebroid are studied and their compatibility conditions are pointed out.

متن کامل

Variational Calculus on Lie Algebroids

It is shown that the Lagrange’s equations for a Lagrangian system on a Lie algebroid are obtained as the equations for the critical points of the action functional defined on a Banach manifold of curves. The theory of Lagrangian reduction and the relation with the method of Lagrange multipliers are also studied.

متن کامل

Lie Algebroids and Lie Pseudoalgebras

Lie algebroids and Lie pseudoalgebras arise from a wide variety of constructions in differential geometry; they have been introduced repeatedly into the geometry, physics and algebra literatures since the 1950s, under some 14 different terminologies. The first main part (Sections 2-5) of this survey describes the four principal classes of examples, emphazising that each arises by means of a gen...

متن کامل

Omni-lie Algebroids *

A generalized Courant algebroid structure is defined on the direct sum bundle DE ⊕ JE, where DE and JE are the gauge Lie algebroid and the jet bundle of a vector bundle E respectively. Such a structure is called an omni-Lie algebroid since it is reduced to the omni-Lie algebra introduced by A.Weinstein if the base manifold is a point. We prove that any Lie algebroid structure on E is characteri...

متن کامل

Invariants of Lie algebroids

Several new invariants of Lie algebroids have been discovered recently. We give an overview of these invariants and establish several relationships between them.

متن کامل

On the category of Lie n-algebroids

Lie n-algebroids and Lie infinity algebroids are usually thought of exclusively in supergeometric or algebraic terms. In this work, we apply the higher derived brackets construction to obtain a geometric description of Lie n-algebroids by means of brackets and anchors. Moreover, we provide a geometric description of morphisms of Lie n-algebroids over different bases, give an explicit formula fo...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 27  شماره 3

صفحات  279- 285

تاریخ انتشار 2016-07-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023